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Note 

Average Electronic Form Factors for 
N e u t r a l  A t o m s  wi th  40 < Z < 90 

I N T R O D U C T I O N  

An atomic form factor or atomic scattering factor is used to describe the major 
variations of  scattering power with angles. These form factors thus provide a basis 
for the comparison of theoretical calculations with experimental measurements. 
Experimentally, form factors are determined using X-ray and neutron diffraction 
methods. In this regard they are usually calculated as a function of sin 0/A, where 0 
is the scattering angle and A is the wavelength of  the incident particle. However, 
if one needs to know the variation of the total scattering cross section with the 
energy of the incident particle for particle atom scattering, (the variation might 
be due to different electronic structure of the atom), one has to know the variation 
of the average electronic form factor (over all angles of scattering) as a function of  
the incident particle energy. For  example, in the measurement of neutron-electron 
potential interaction [1, 2] knowledge of the average electronic form factor is 
needed in order to interpret the strength of the neutron-electron interaction 
potential from the experimental data. Whatever the need may be, the calculation 
of  the electronic form factor is limited to the choice of the atomic model and, for 
fairly heavy neutral atoms, it is justified to use the Thomas-Fermi model [12, 13]. 

Average electronic form factors were calculated using the Thomas-Fermi model 
and an analytical fit to these form factors was obtained. This expression provides 
the average form factor as a function of ~z/3, a variable often used in connection 
with the Thomas-Fermi model. 

T H E O R E T I C A L  C O N S I D E R A T I O N S  

Even though the mathematical details of the Thomas-Fermi model have been 
discussed in the literature [3, 4], the necessary formulas for understanding this 
note will be reviewed. 

The form factor defined as the Fourier transform of the charge distribution can 
be written as 

f? f (q)  = o(r) exp(iq �9 r) dr (1) 
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where q = k I - - k i  the change in momentum; kg and k I are initial and final 
momenta of the incident particle, respectively. For elastic scattering, I k ~ l =  
I kf [ = k, and ] q I = 2k sin (0/2), where 0 is the scattering angle. Expressing q in 
terms of the wavelength of the incident particle (k = 2~r/A), one obtains 

f (,~) = ,~ ro(r)[sin[4~rr sin(O/2)fi~l/sin(O/2)] dr. (2) 

The average off(A) over all angles of scattering is given by 

fo f; ( f  (~))  = ~ rp(r) sin[4rrr sin(0/2)/2q cos(0/2) dO dr (3) 

p(r),the charge density must be known in order to calculatef 00. Using the Thomas- 
Fermi model p(r) can be expressed in terms of the spherically symmetrical potential 
energy V(r) ,  such that 

p(r) = �89 x [--V(r)]3/"a. (4) 

The Poisson equation then connects the electrostatic potential --(l/e) V(r)  with 
the charge density ep(r) resulting in 

V~V(r) = --4rre2p(r).  (5) 

Equation (5) leads to the Thomas-Fermi equation in terms of the variables x = rib 
with b = (3~r)2/a hZz-1/~/2w a m e  2 (or b = .88534 aoz -1/3 where a o = h 2 / m e  2 = 
5.292 x 10 -11 m, the Bohr radius, and e, m, h, z have the usual meaning) and 
r V = --  ze~ (o 

dZr  2 =  r (6) 

One thus needs r to know p(r) which in turn is necessary to calculate the 
form factors. Several solutions to the Thomas-Fermi equation (6) exist. Numerical 
solutions as accurate as five significant figures are given by Kobayaski [7]. Other 
attempts have been made by various authors [5, 6, 8, 9] to obtain an anlaytic fit 
to the numerical solution of Eq. (6). However, none of these solutions of r 
can be used to obtain the expression for the form factor in an integrable form; 
one has to use numerical methods in order to obtain the form factors despite 
which form of r is used. Therefore the following integral needs to be evaluated 

with 
), = bzl/3/a o ; b = (1/4) ao(97r2/2z)l/3 
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RESULTS AND DISCUSSION 

Equation (7) was evaluated (using a numerical integration method, e.g., Simpson 
rule) for the numerical and analytical forms of r as shown in Figs. l(a) and 
l(b). An analytical fit to the form factor f(y) ,  using numerical values for r was 
obtained (other attempts of analytical fit to form factors using the Hartree-Fock 
model can be found in the literature [11 ]. 

This polynomial fit to the form factor is written in the form 

N 
f ( y )  = ~ Bny n-1. (8) 

n=l 

The coefficients Bn were calculated using the method of least squares for different 
regions of hzl/3. In order to keep the number of terms in Eq. (8) small f (y)  has 
been divided into several regions of arbitrary boundary and the end points of each 
region matched by extrapolation. The most accurate values of Bn as obtained by 
this method for various ranges of )tzl/3 are presented in Table I. The power series 

TABLE I 

Coefficients in Form Factor Expansion 

0 < y < 8 . 3 3 1 5  8 . 3 3 1 5 < y <  17.055 1 7 . 0 5 5 < y < 2 8 . 3 5 8  2 8 . 3 5 8 < y < 4 3 . 4 4  

B1 - - 0 . 4 6 5 1 3 9 1  x 10 -2 - - 0 . 2 3 2 5 5 1 9  X 10 -1 - - 0 . 5 2 7 5 5 5 8  

B3 + 0 . 1 3 4 1 2 6 9  + 0 . 1 9 6 0 1 1 1  + 0 . 3 0 7 7 9 9 2  
B3 + 0 . 4 0 6 0 4 9 4  x 10 -1 - - 0 . 2 3 9 8 4 5 9  x 10 -1 - - 0 . 3 1 3 7 9 3 9  X 10 -1 

B4 - - 0 . 2 9 3 1 8 6 2  X 10 -1 + 0 . 1 9 4 1 6 6 3  X 10 -3 + 0 . 1 8 2 2 4 7 2  X 10 -3 

B5 + 0 . 7 9 7 5 1 1 6  x 10 -3 - - 0 . 9 8 8 0 3 9 9  x 10 -4 - - 0 . 6 1 1 3 2 9 7  x 10 -4 

B3 + 0 . 1 1 4 5 7 0 0  x 10 -3 - - 0 . 2 8 4 3 5 1 6  x 10 -5 + 0 . 1 1 0 6 5 9 5  x 10 -5 

B~ + 0 . 8 4 8 3 0 0 9  x 10 -4 - - 0 . 3 5 1 7 1 1 9  x 10 -7 - - 0 . 8 3 9 0 9 4 2  x 10 -8 

B8 - - 0 . 2 5 4 3 3 5 6  X 10 -5 - -  - -  

+ 0 . 7 3 0 3 2 3 2  

+ 0 . 1 1 1 8 5 5 2  X 10 -1 

- - 0 . 1 8 4 4 8 9 7  X 10 -3 

+ 0 . 1 1 9 5 2 9  x 10 - s  

expansion o f f (y )  is justified because we are using least-square fit and it is known 
that the most appropriate least-square polynomial approximation to a function 
f (y)  must have two characteristics: (1) it must be of sufficiently high degree so that 
the approximating polynomial provides a good approximation to the true function, 
but (2) it must not be of so high a degree that it fits the observed data too closely in 
the sense that the "noise" or inaccuracies in the observed data are retained in the 
least-square approximation. 

It should be noted that the analytic solutions of r [5, 8-10] give form factors 
that differ from the form factor obtained using numerical values for r [7] for 
large values of Azl/8. Our polynomial fit corresponds to the use of the numerical 
solution for r 
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